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Abstract

We give basic results for classifying singular Legendre curves in the contact 3-space from the
viewpoint of singularity theory of differentiable mappings. In particular, we introduce the notion
of codimension, discuss the finite determinacy, and give an alternative proof to M. Zhitomirskii’s
theorem stating that locally diffeomorphic singular Legendre curves are locally contactomorphic,
in the complex analytic category.
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1. Introduction

It is well known that all non-singular Legendre curves in contact three spaces are locally
equivalent via contactomorphisms; the relative Darboux theorem[2]. We can try to general-
ize this fact into two directions; global and singular ways. To the global direction, we look at
the classification of Legendre knots as one of main subjects in contact topology[4,9]. Then
we observe that the global classification by diffeomorphisms and by contactomorphisms are
different. In fact even trivial knots have non-equivalent contactomorphism types. Now, pro-
ceeding to the singular direction, we first encounter the classification of singular Legendre
curves by contactomorphisms as one of main subjects in contact singularity theory[1].

Zhitomirskii [22] has shown the following fundamental theorem in contact singularity
theory.
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Theorem 1.1 (Zhitomirskii). In the space of Legendre curves(R,0) → (R3,0), there
exists a subset of infinite codimension such that, away from this subset, the diffeomorphism
equivalence implies the contactomorphism equivalence.

Also, in [22], he has given the characterization of contact simple Legendre curves and
the list of contact simple Legendre curves via Bruce–Gaffney’s classification of simple
singularities of plane curves[5]. Moreover several basic results are given there for the local
classification problem of singular Legendre curves.

In the present paper we give related basic results from the viewpoint of singularity theory
of differentiable mappings[3,7,16,17,21]. In particular, we introduce the notion of codi-
mension (Section 4) and discuss the finite determinacy (Section 6) in contact singularity
theory. Moreover we give the following theorem.

Theorem 1.2. Two Legendre curves(C,0) → (C3,0) of finite type are contactomorphic
if and only if they are diffeomorphic.

A Legendre curve isof finite typeif and only if it is determined by its finite jet up to
holomorphic diffeomorphisms and Legendre curves of finite type form a set of infinite
codimension in the space of Legendre curves. Therefore,Theorem 1.2give an alternative
proof toTheorem 1.1in the complex analytic category.

If two curves are contactomorphic, then of course they are diffeomorphic.Theorems 1.1
and 1.2state the converse is true when they are integral. Remark thatTheorem 1.2is not
valid without the integrality condition. For example a transverse immersed curve to the
contact distribution and a non-singular Legendre curve are locally diffeomorphic but not
contactomorphic.

In [1] integral curvesf : (C,0) → (C2n+1,0) with ordf = 2 are classified by con-
tactomorphisms in general dimensional cases into seriesA2k,0 andA2k,r. If n ≥ 2, A2k,0
andA2k,r, r > 0 are not contactomorphic while they are diffeomorphic. Thus we see the
classification of singular Legendre curves (n = 1) has the special feature, compared with
the higher codimensional cases (n ≥ 2).

Now we explain notions, with some motivations, appearing in the above theorem.
Let PT∗C2 denote the projectivization of the cotangent bundleT ∗C2 over C2. It is a

trivial CP1-bundle overC2 with the canonical projectionπ : PT∗C2 → C2, and it is
identified with the space of contact elements onC2; an elementc = [α] ∈ PT∗C2 with
α ∈ T ∗

π(c)C
2 \ {0} defines uniquely the tangential line Ker(α) ⊆ Tπ(c)C2.

The space of contact elementsPT∗C2 has the complex analytic contact structure (distri-
bution)D ⊆ T(PT∗C2) defined byDc := π−1∗ (c) for eachc ∈ PT∗C2, wherec is regarded
also as a contact elementc ⊆ Tπ(c)C2, andπ∗ : T(PT∗C2) → TC2 denotes the differential
of π : PT∗C2 → C2. A diffeomorphismΦ : V → W , V andW being open subsets of
PT∗C2, is called a contact diffeomorphism or briefly acontactomorphismif Φ preserves the
contact structureD; Φ∗(D|V ) = D|W . By Darboux’s theorem, the pseudo-group of local
contactomorphisms acts onPT∗C2 transitively.

A complex analytic mappingf : U → PT∗C2 from an open subsetU ⊆ C is called
an integral curveor a Legendre curveif f∗(∂/∂z) ∈ Df(z). Moreover iff is an integral
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immersion, then it is called aLegendre immersion. Thus by asingular Legendre curvewe
mean a integral curve which is not necessarily an immersion.

Let us fix a system of coordinatesx, y on C2 and thus the decompositionC2 = C × C.
Then consider the affine subspaceC3 ⊆ PT∗C2 consisting of non-vertical contact elements
on C2 for the projection(x, y) �→ x along they-axis, which has the system of coordinates
x, y andp with the contact one-formα = dy − pdx definingD|C3. A curvef : U → C3

is integral if and only iff ∗α = 0. A complex analytic plane curve onC2 lifts to an integral
curve, by taking tangent lines to points on the curve, inPT∗C2. At a point with thex-axis
as the tangent line, the integral lifting defines an integral curve germ(C,0) → (C3,0).

Two curvesf, f ′ : (C,0) → (C3,0) are calleddiffeomorphic(resp.contactomorphic)
if f ′ is transformed tof by a holomorphic diffeomorphism (resp. a contactomorphism)
(C3,0) → (C3,0) up to a parametrization.

In this paper we only consider germs of finite type: we call a complex analytic integral
curvef : (C,0) → (C3,0) of finite typeif it has a locally injective representative.f
is of finite type if and only iff is A-finite in the sense of[21]. Moreover an integral
curvef = (x, y, p) : (C,0) → (C3,0) is of finite type if and only if the plane curve
(x, p) : (C,0) → (C2,0) has a locally injective representative.

Recently, Zhitomirskii[23] generalizes the relative Darboux theorem to singular varieties
in a contact space. We shortly explain Zhitomirskii’s result in the complex case.

Let X ⊂ (C2n+1,0) be a subset andα a one-form on(C2n+1,0). The residual class
[α]X of α modulo the exterior differential ideal generated by functions vanishing overX,
is called thealgebraic restrictionof α to X. Let X,X′ ⊂ (C2n+1,0). Then the algebraic
restrictions of the contact structure toX andX′ respectively are calleddiffeomorphicif there
exists a diffeomorphismΦ : (C2n+1, X) → (C2n+1, X′) and a non-vanishing functionΛ :
(C2n+1,0) → C \ {0} such that [Φ∗α]X = [Λα]X. If (C2n+1, X) and (C2n+1, X′) are
contactomorphic, then the algebraic restrictions of the contact structure toX andX′ are
diffeomorphic in the above sense. Then Zhitomirskii shows the following theorem.

Theorem 1.3 (Zhitomirskii [23]). (C2n+1, X) and(C2n+1, X′) are contactomorphic if and
only if the algebraic restrictions of the contact structure toX andX′ are diffeomorphic.

Then, related to his result, we interpret our resultTheorem 1.2in term of the algebraic
restriction.

Corollary 1.4 (of Theorem 1.2). Letf, f ′ (C,0) → (C3,0)be injective integral map-germs.
If f andf ′ are diffeomorphic, then the algebraic restrictions of the contact structure on
(C3,0) to f andf ′ respectively are diffeomorphic.

The relative Darboux theorem is reduced to the classification problem of differential forms
by diffeomorphisms preserving a fixed variety.Theorem 1.1is established by Zhitomirskii
along this method. In general, the relative Darboux theorem is closely related to therelative
Poincaré lemma[11]. For the recent progress on this subject, see[8].

Contrary to the above method, in this paper we consider the deformation and the classifi-
cation of integral curves by contactomorphisms for the fixed contact form, along Mather’s
type theory. Theoretically the both methods are equivalent to each other. However the both
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aspects are effective and will help to each other, depending on concrete situations, in the
singularity theory with various geometric structures. Note that our theory is generalized to
higher dimensional cases in[13].

Moreover, according to a remarkable idea due to Zhitomirskii and Mormul, our subject,
the classification problem of Legendre curves, is closely related to the classification problem
of Goursat systems[6,15,18–20]. Therefore the method developed in this paper works also
on the study on Goursat systems, which we will show in a forthcoming paper.

In Sections 2 and 3, we give preliminaries on contactomorphisms and singular Legendre
curves (integral curves). InSection 4, we introduce the notion ofcontact codimension
and orbital contact codimensionfor an integral curve, and show that both are not only
contact invariants but alsodiffeomorphism invariantsof integral curves. Moreover, in fact,
there are no infinitesimal difference between the contactomorphism classification and the
diffeomorphism classification of integral curves, inSection 5. In Section 6, we show that
any injective integral curve is finitely determined among integral curves. InSection 7, we
complete the proof ofTheorem 1.2. Lastly, inSection 8, we give a remark on contact simple
integral curves among integral curves, related to symplectically simple plane curves[14].

Throughout this paper, for a holomorphic functionh : (C,0) → C, we denote by ordh
the order ofh at 0, the degree of the leading term.

2. Contactomorphisms

A holomorphic diffeomorphismΦ : V → W ,V andW being open subsets inC3 endowed
with the contact formα = dy − pdx, is a contactomorphism if and only if there exists a
non-vanishing holomorphic functionΛ onV satisfyingΦ∗α = Λα onV .

Example 2.1. Letφ : (C2,0) → (C2,0) be a diffeomorphism of formφ(x, y) = (X(x, y),

Y(x, y)) with (∂X/∂x)(0,0) �= 0. Thenφ defines a contactomorphism̂φ : (C3,0) →
(C3, φ̂(0)) by φ̂(x, y, p) := (X, Y, P)

P(x, y, p) := (∂Y/∂x) + p(∂Y/∂y)

(∂X/∂x) + p(∂X/∂y)
, φ̂(0) = (∂Y/∂x)(0,0)

(∂X/∂x)(0,0)
.

For example,

X = x, P = p − a(x), Y = y −
∫ x

0
a(ζ)dζ,

defines a contactomorphism satisfying dY − P dX = dy − pdx.

Example 2.2. Consider the diffeomorphism onC3 defined by(x, y, p) �→ (X, Y, P)

X = −p, P = x, Y = y − px.

Then we have dY −P dX = dy− pdx. So this is a contactomorphism, which is called the
Legendre transformation.
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The infinitesimal contact transformations on(C3, α), α = dy − pdx are given by the
contact Hamiltonian vector fields overC3.

Let H ∈ O3. Then the contact Hamiltonian vector filed overC3 with the Hamiltonian
functionH is defined by

XH :=
(
∂H

∂x
+ p

∂H

∂y

)
∂

∂p
− ∂H

∂p

∂

∂x
+

(
H − p

∂H

∂p

)
∂

∂y

(cf. [2]). The vector filedXH is characterized by the conditions

〈α,XH 〉 = H, LXHα = λα

for someλ ∈ O3, where〈α,XH 〉 means the natural paring of a 1-form and a vector field.
We set

VH3 := {XH |H ∈ O3}.
ThenVH3 is anO3 module: forK ∈ O3 and forXH ∈ VH3, we setK ∗ XH := XKH.

Now we consider the invariant filtration

O3 = m0
3 ⊃ m3 ⊃ m2

3 ⊃ m3
3 ⊃ · · · ,

under diffeomorphisms therefore under contactomorphisms. Herem3 := {h ∈ O3|h(0) =
0} denotes the unique maximal ideal ofO3. Also we consider another invariant filtration
under contactomorphisms

O3 = I0 ⊃ I1 ⊃ I2 ⊃ I3 ⊃ · · · ,
where we set

Ij := {h ∈ O3|weight(h) ≥ i}, j = 0,1,2, . . .

setting weight(x) = 1,weight(p) = 1,weight(y) = 2. Remark that, for anh ∈ O3 and
for a contactomorphismΦ : (C3,0) → (C3,0), we have weight(Φ∗h) = weight(h). Two
filtrations{mj

3} and{Ij} are related byI2j ⊆ m
j

3 ⊆ Ij(j = 1,2, . . . )
Then easily we have the following lemma.

Lemma 2.3. We haveI2j ∗ VH3 = VH3 ∩ m
j

3V3(j = 1,2, . . . ) In particularm2
3 ∗ VH3 ⊆

I2 ∗ VH3 = VH3 ∩ m3V3 ⊆ m3 ∗ VH3.

3. Singular Legendre curves

Let f : (C,0) → (C3,0) be an integral map-germ. Setf = (x, y, p) = (f1, f2, ϕ).
Then we have df2−ϕdf1 = 0, namely, df2/dt = ϕ(df1/dt). Then ordϕ = ordf2−ordf1.
Moreover we have

f2(t) =
∫ t

0
ϕ(ζ)

df1

dt
(ζ)dζ.

Example 3.1. Let f1 = t2, ϕ = t2k+1. Thenf2 = (2/(2k + 3))t2k+3.



118 G. Ishikawa / Journal of Geometry and Physics 52 (2004) 113–126

We study the infinitesimal deformations off among integral mappings. Letα̃ be the
natural lifting toTC3 of the one-formα = dy − pdx on C3. Let (x, y, p; x̃, ỹ, p̃) be the
induced coordinates ofTC3 from the coordinates(x, y, p) of C3. Then

α̃ := dỹ − p̃dx − pdx̃ = d(ỹ − px̃) − p̃dx + x̃ dp.

Now set

VIf := {w : (C,0) → TC3|π ◦ w = f,w∗α̃ = 0}.

Let w = (f1, f2, ϕ; ξ, η, ψ) : (C,0) → TC3 belong toVIf . Then we have dη = ψ df1 +
ϕ dξ and d(η − ϕξ) = −ξ dϕ + ψ df1.

Proposition 3.2. VIf coincides with the space of infinitesimal integral deformations off :
For a holomorphic vector fieldw : (C,0) → TC3 alongf , w satisfiesw∗α̃ = 0 if and
only if there exists a holomorphic integral deformationF : (C × C,0) → C3 of f with
w = (∂F/∂s)|s=0.

Proof. That F is an integral deformation means, settingF = F(t, s) = fs(t), that we
havef0 = f andf ∗

s α = 0. By differentiating the both sides of the equalityf ∗
s α = 0 by

s, we havew∗α̃ = 0. Conversely, for eachw = (f1, f2, ϕ; ξ, η, ψ), if we setF(t, s) =
(f1(t) + sξ(t), f2(t) + E(t, s), ϕ + sψ), where

E(t, s) := s

∫ t

0
ϕ(ζ)ξ′(ζ)dζ + s

∫ t

0
ψ(ζ)f ′

1(ζ)dζ + s2
∫ t

0
ψ(ζ)ξ′(ζ)dζ,

thenF is an integral deformation satisfyingw = (∂F/∂s)|s=0. �

For aw = (f1, f2, ϕ; ξ, η, ψ) ∈ VIf , we call iwα := η − ϕξ ∈ O3 the generating
function of w. Setk = η − ϕξ. Then we see ord(k − k(0)) ≥ min{ordf1,ordϕ}. Set
s = min{ordf1,ordϕ}(= ordf), and set

Rf := R + ms
1,

wherem1 := {h ∈ O3|h(0) = 0}. Let k ∈ Rf . Then there existξ andψ with dk =
−ξ dϕ + ψ df1. Moreover settingη = k + ϕξ, we havek = η − ϕξ.

Therefore we see the linear mappinge : VIf → Rf defined by taking the generating
function,e(w) := iwα, is surjective. We denote the kernel of the linear mappinge by

VI′f := {w ∈ VIf |iwα = 0}.

We seeVI′f is anO1-submodule of theO1-moduleVf of all holomorphic vector fields

(C,0) → TC3 alongf .
Definewf : VH3 → VIf by wf(XH) := XH ◦ f . In fact, if we regardXH as the section

XH : (C3,0) → TC3, we seeX∗
Hα̃ = λα for someλ ∈ O3. Therefore(XH ◦ f)∗α̃ =

(f ∗λ)(f ∗α) = 0.



G. Ishikawa / Journal of Geometry and Physics 52 (2004) 113–126 119

Then the generating function ofwf(XH) is equal toH ◦ f . In fact, if we setw =
(f1, f2, ϕ; ξ, η, ψ), then

ξ = −∂H

∂p
◦ f, η = H ◦ f − ϕ

∂H

∂p
◦ f, ψ = ∂H

∂x
◦ f + ϕ

∂H

∂y
◦ f,

and we see

η − ϕξ =
(
H ◦ f − ϕ

∂H

∂p
◦ f

)
− ϕ

(
−∂H

∂p
◦ f

)
= H ◦ f.

We define anO3 module structure onVIf as follows: forH ∈ O3 andw ∈ VIf , we define
the multiplication

H ∗ w := f ∗H · w + (iwα)(XH − H · X1) ◦ f.

If we setw = (f1, f2, ϕ; ξ, η, ψ), then the right hand side of the definition becomes

(H ◦ f)(ξ, η, ψ) + (η − ϕξ)

(
−∂H

∂p
◦ f,−ϕ

∂H

∂p
◦ f,

∂H

∂x
◦ f + ϕ

∂H

∂y
◦ f

)
.

Then we have as in[12].

Proposition 3.3. The space VIf of infinitesimal integral deformations of an integral map-
pingf is anO3-module by the multiplication defined above. The sequence

0 → VI′f → VIf
e−→Rf → 0

isO3-exact. Moreover, setting

VH0
3,f = {XH ∈ VH3|H ◦ f = 0},

we have anO3-exact sequence

0 →
VI′f

wf(VH0
3,f )

→ VIf
wf(VH3)

→ Rf

f ∗O3
→ 0.

The following is clear.

Lemma 3.4. I2 ∗ VIf ⊆ m3 ∗ VIf ⊆ VIf ∩ m1Vf .

Let f : (C,0) → (C3,0) be an integral curve. We have defined anO3-module homo-
morphismwf : VH3 → VIf bywf(XH) := XH ◦ f .

We denote byV1 the set of germs of holomorphic vector fields over(C,0) and define
anO3-module homomorphismtf : V1 → VIf by tf(v) := f∗(v). Remark that, sincef is
integral, we havetf(v) ∈ VIf and moreover the generating function oftf(v) is equal to 0;
e(tf(v)) = 0.

Letw = (f1, f2, ϕ; ξ, η, ψ) belong toVI′f . Thenη−ϕξ = 0. Moreover we have−ξ dϕ+
ψ df1 = 0, namely, we haveξϕ′ = ψf ′

1, soψ = ξ(ϕ′/f ′
1).
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Assume, using the Legendre transformation (Example 2.2) if necessary, ordf1 ≤ ordϕ(=
ordf2 −ordf1). Then 2 ordf1 ≤ ordf2 ands = ordf1. Then we haveη = ϕξ = ξ(f ′

2/f
′
1)

andψ = ξ(ϕ′/f ′
1). So we have




ξ

η

ψ


 = ξ




1

f ′
2

f ′
1

ϕ′

f ′
1


 = ξ

f ′
1




f ′
1

f ′
2

ϕ′




if ord ξ ≥ ordf1 − 1.
Thus we have the following lemma.

Lemma 3.5. Letf : (C,0) → (C3,0)be an integral map-germ. If w = (f1, f2, ϕ; ξ, η, ψ) ∈
VI′f satisfiesordξ ≥ ordf1 − 1, thenw ∈ tf(V1). If ordξ ≥ ordf1, thenw ∈ tf(m1V1).

In particular we have the following.

Lemma 3.6. wf(VH3) ∩ VI′f ⊆ tf(m1V1) ⊆ tf(V1).

Proof. SupposeXH ◦ f ∈ VI0f . This means thatH ◦ f = 0. In particularH(0) = 0. Set

H(x, y, p) = ax + by + cp + ãx2 + · · · . ThenH ◦ f = af1 + bf2 + cϕ + ãf 2
1 + · · · .

We may assume ordf1 < ordϕ as well as that ordϕ is not a multiple of ordf1, by using
a contactomorphism preserving the contact formα as inExample 2.1if necessary. Then
we havea = 0, ã = 0, . . . andc = 0. Therefore we have(∂H/∂p)(0) = 0, and ordξ ≥
ordf1 = ordf . Therefore, byLemma 3.5, we havew ∈ tf(m1V1). �

4. Contact codimension

Now we define thecontact codimensionof f by

ct-codim(f) := dimC
VIf

tf(V1) + wf(VH3)
.

Similarly we define theorbital contact codimensionof f by

codim(Ctf) := dimC
VIf ∩ m1Vf

tf(m1V1) + wf(VH3 ∩ m3V3)
.

Then we will show the following proposition.

Proposition 4.1. The contact codimension of an integral curvef : (C,0) → (C3,0) is
equal todimCO1/f

∗O3. The orbital contact codimension off is equal todimCm1/f
∗m2

3.
In particular the contact codimension and the orbital contact codimension are both diffeo-
morphism invariants.
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Proof. By Proposition 3.3, we have the exact sequence:

0 →
VI′f

tf(V1)
→ VIf

tf(V1)
→ Rf → 0.

Then, byLemma 3.6, we have the exact sequence:

0 →
VI′f

tf(V1)
→ VIf

tf(V1) + wf(VH3)
→ Rf

f ∗O3
→ 0.

Now we have, settings = ordf , dimCVI′f /tf(V1) = s − 1. On the other hand we see
dimCO1/Rf = s − 1. Thus we have

ct-codim(f) = dimC
O1

Rf

+ dimC
Rf

f ∗O3
= dimC

O1

f ∗O3
.

Similarly we have the exact sequence

0 →
VI′f ∩ m1Vf

tf(m1V1)
→ VIf ∩ m1Vf

tf(m1V1) + wf(VH3 ∩ m3V3)
→ ms

1

f ∗m2
3

→ 0.

Since dimC(VI′f ∩ m1Vf /tf(m1V1)) = s − 1 = dimCm1/m
s
1, we have

codim(Ctf) = dimC
m1

ms
1

+ dimC
ms

1

f ∗m2
3

= dimC
m1

f ∗m2
3

. �

5. Contact defect

Now we consider the infinitesimal difference, which may be called thecontact defect,
between the diffeomorphism classification and the contactomorphism classification for in-
tegral curves(C,0) → (C3,0).

Lemma 5.1. For an integral curvef : (C,0) → (C3,0), we havewf(m3V3) ∩ VI′f ⊆
tf(m1V1).

Proof. We setf = (f1, f2, ϕ). We may suppose ordf = ordf1. Let v = A(∂/∂x) +
B(∂/∂y) + C(∂/∂p) ∈ m3V3; A(0) = 0, B(0) = 0, C(0) = 0. Supposewf(v) ∈ VI′f .
Then, byA(0) = 0, we see ord(A ◦ f) ≥ ordf . Thus, byLemma 3.5, we seewf(v) ∈
tf(m1V1). �

Now set

TD(f) := tf(m1V1) + wf(m3V3) ∩ VIf ,

and set

T(f) := tf(m1V1) + wf(VH3 ∩ m3V3).
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Then TD(f) represents the tangent space to the orbit off for diffeomorphisms in the
space of integral map-germs, andT(f) represents the tangent space to the orbit off by
contactomorphisms. It is clear thatT(f) ⊆ TD(f). Actually we see there exists no contact
defect.

Lemma 5.2. TD(f) = T(f).

Proof. Recall theO3-homomorphisme : VIf → O3 defined bye(w) = η − ϕξ for
w = (f1, f2, ϕ; ξ, η, ψ) ∈ VIf . We set

e(TD(f)) = {B ◦ f − ϕA ◦ f |v ∈ m3V3, wf(v) ∈ VIf },
representingv = v = A(∂/∂x) + B(∂/∂y) + C(∂/∂p). We claime(TD(f)) ⊆ m2s

1 , where
s = ordf . We may assume ordf1 < ordϕ. By d(B◦f−ϕA◦f) = −(A◦f)dϕ+(C◦f)df1,
we have(∂B/∂x)(0) = 0. If (1) ordϕ < 2 ordf1, then moreover we see(∂B/∂p)(0) = 0.
Then e(w) ∈ m2s

1 . If (2) 2 ordf1 ≤ ordϕ, then, from just(∂B/∂x)(0) = 0, we have
e(w) ∈ m2s

1 . Therefore anywaye(w) ∈ m2s
1 . So we havee(TD(f)) ⊆ m2s

1 .
Besides we havee(T(f)) = {H ◦ f |H ∈ O3, XH(0) = 0}. The conditionXH(0) = 0

is equivalent to that(∂H/∂x)(0) = 0, (∂H/∂p)(0,0) = 0. Therefore we seee(T(f)) =
f ∗m2

3 = m2s
1 .

Thus we havee(TD(f)) ⊆ e(T(f)). Since the converse inclusion holds trivially, we have
e(TD(f)) = e(T(f)).

Now let w ∈ TD(f) = tf(m1V1) + wf(m3V3) ∩ VIf . Takew̃ ∈ T(f) = tf(m1V1) +
wf(VH3 ∩ m3V3) with e(w̃) = e(w). This is possible sincee(TD(f)) = e(T(f)). Then
w′ := w − w̃ ∈ tf(m1V1) + wf(m3V3) ∩ VI′f . Then, by 5.1, we seew′ ∈ tf(m1V1).
Therefore we havew itself belongs toT(f). �

6. Finite determinacy

We observe the following theorem.

Theorem 6.1. An integral curve(C,0) → (C3,0) is finitely determined among integral
curves for contactomorphisms.

Recall that we assume any integral curves areA-finite. Letf : (C,0) → (C3,0) be an
A-finite map-germ. Thenf is L-finite. Then there existsr ∈ N such that any map-germ
g : (C,0) → (C3,0) with ther-jet jrg(0) = jrf(0) satisfiesg∗m3 ⊇ mr

1 [21]. If we taker
sufficiently large if necessary, we haveg∗m2

3 ⊇ mr
1.

Assume now moreoverf = (f1, f2, ϕ) andg = (g1, g2, ψ) are integral andjrg(0) =
jrf(0). SetFs = (f1 + s(g1 − f1), y, ϕ + s(ψ − ϕ)), where

y =
∫ t

0
{ϕ(ζ) + s(ψ(ζ) − ϕ(ζ))}d(f1 + s(g1 − f1))

dt
(ζ)dζ.

Then we see eachFs is integral,jrFs(0) = jrf(0) andF0 = f, F1 = g. In particular
F∗
s m

2
3 ⊆ mr

1. Moreover we set, for eachs0 ∈ C, F : (C × C,0) → (C3 × C,0) by
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F(t, s) := (Fs(t), s− s0). Then we havemr
1O2 ⊆ F∗m2

3O4. Now consider the infinitesimal
deformation(dFs/ds) = (g1 − f1, (∂y/∂s), ψ − ϕ). Since

∂y

∂s
=

∫ t

0
(ψ(ζ) − ϕ(ζ))

d(f1 + s(g1 − f1))

dt
(ζ)dζ

+
∫ t

0
{ϕ(ζ) + s(ψ(ζ) − ϕ(ζ))}d(g1 − f1)

dt
(ζ)dζ

belongs tomr
1O2, we see dFs/ds belongs toVIFs ∩mr

1VFs , considering alsos as a variable.
Now remark thatVIFs ∩ mr

1VFs ⊆ tFs(m1V1) + wFs(VH3 ∩ m1V3). In fact, letw ∈
VIFs ∩mr

1VFs . Then the generating functione(w) belongs tomr
tOt,s ⊆ F∗

s (m
2
x,p,yOx,p,y,s).

There exists anH ∈ m2
x,p,yOx,p,y,s ⊆ I2Ox,p,y,s, w−XH ◦ F ∈ VI′Fs ∩wF(m3V4). Thus

w − XH ∈ tFs(mtVt,s). Therefore we see

VIF ∩ mr
1VF ⊆ tF(m1V2) + wF(VH3 ∩ m3V4).

This impliesf is finitely determined among integral curves for contactomorphisms.

7. Proof of Theorem 1.2

The key step we have to overcome is the following proposition.

Proposition 7.1. Let f, f ′ : (C,0) → (C3,0) be integral map-germs. Iff and f ′ are
diffeomorphic, then there exists an integral map-germf ′′ such thatf ′′ is contactomorphic
to f ′ and thatf ′′ is connected tof through an integral and isotropic family, namely, there
exist holomorphic diffeomorphismsΦs : (C3,0) → (C3,0) and σs : (C,0) → (C,0),
depending holomorphically on pointss in a connected domain inC which contains0 and
1, such thatfs = Φs ◦ f ◦ σs are integral andf0 = f ′′, f1 = f .

Proof. Denote byC,C′ the images off, f ′ respectively. Suppose there exists a holomorphic
diffeomorphismΦ : (C3,0) → (C3,0) such thatΦ(C) = C′. Compareα = dy − pdx
andβ := Φ∗α. Then we haveα|C = 0, β|C = 0. Remark that alsoβ is a contact form on
(C3,0). This means that(β ∧ dβ)(0) �= 0.

Now put αs := (1 − s)α + sβ, for s ∈ C. The condition(αs ∧ dαs)(0) = 0 is an
algebraic equation, in fact of second order, ons. Therefore, outside of a finite setB ⊆ C,
αs is a contact form on(C3,0) satisfyingαs|C = 0. Take a path connecting 0 and 1 on
C \ B. Then there exists a family of diffeomorphismsΦs depending holomorphically on a
sufficiently thin open neighborhood of the path inC \B. This is proved by the infinitesimal
method applied to showing Darboux theorem[2]. Consider the curveCs := Φs(C). We
haveΦ∗

1α = α1 = β = Φ∗α. So we have(Φ1 ◦ Φ−1)∗α = α. ThereforeΦ1 ◦ Φ−1 is
a contactomorphism. Moreover we haveα|Cs = Φ∗

s α|C = αs|C = 0. (Φ1 ◦ Φ−1)(C′) =
Φ1(C) = C1. We denote byf ′′ a parametrization (normalization) ofC1. Thenf ′′ is an
integral curve and contactomorphic tof ′. Furthermoref andf ′′ are connected through an
integral and diffeomorphic family. �
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Consider the integral jet spaceJr
I (1,3) ⊆ Jr(1,3) defined by

Jr
I (1,3) := {jrf(0) ∈ Jr(1,3)|f : (C,0) → (C3,0) is integral}.

ThenJr
I (1,3) ⊆ Jr(1,3) is a complex analytic submanifold. In fact there is an embedding

Jr(1,2) → Jr(1,3) defined byjr(f1, ϕ)(0) �→ jr(f1, f2, ϕ)(0), where

f2(t) :=
∫ t

0
ϕ(ζ)

df1

dt
(ζ)dζ.

Remark thatjr−1(df2/dt)(0) = jr−1(ϕ(df1/dt))(0).
We consider the natural action onJr(1,3) (resp.Jr

I (1,3)) of the groupAr (resp.CTr)
consisting ofr-jets (jrσ(0), jrΦ(0)) of parameter transformationsσ : (C,0) → (C,0)
and diffeomorphisms (resp. contactomorphisms)Ψ : (C3,0) → (C3,0). Then for any
z ∈ Jr

I (1,3), the orbitCTrz under contactomorphisms is contained in the orbitArz under
diffeomorphisms as well as inJr

I (1,3). Then we show the following proposition.

Proposition 7.2. For any integral map-germf : (C,0) → (C3,0),Arjrf(0)∩Jr
I (1,3) ⊆

CTrjrf(0).

Proof. Let z ∈ Arjrf(0) ∩ Jr
I (1,3). Thenz = jrf ′(0) for some integral map-germf ′.

Moreover, sincef is A-r-determined,f ′ is diffeomorphic tof . Then byProposition 7.1
there exists an integral germf ′′ such thatf ′ andf ′′ are contactomorphic andf ′′ are con-
nected by a diffeomorphic integral familyfs tof . Since dimT(jrfs(0)) is independent ons
and dfs/ds ∈ TD(fs) ⊆ T(fs) (Lemma 5.2). Thus, by Mather’s lemma[17, pp. 534–535],
we seejrf ′′(0) ∈ CTrjrf(0). Therefore alsoz = jrf ′(0) belongs toCTrjrf(0). �

Proof of Theorem 1.2. Let an integral germf ′ be diffeomorphic tof . Thenjrf ′(0) ∈
Arjrf(0) ∩ Jr

I (1,3). Hence, byProposition 7.2, we seejrf ′(0) ∈ CTrjrf(0). Then, there
exist an integral germf ′′′ such thatjrf ′′′(0) = jrf(0) andf ′′′ is contactomorphic tof ′.
Sincef is r-determined by contactomorphisms, we seef ′′′ andf are contactomorphic.
Thus we seef ′ andf are contactomorphic as required. �

Example 7.3. Let f : (C,0) → (C3,0) be an integral curve. Setf(t) = (x, p, y) =
(t2, ϕ(t), f2(t)) and assume ordϕ = 2k + 1, k = 0,1,2, . . . Thenf is contactomorphic to
(t2, t2k+1, (2/(2k + 3))t2k+3). In fact, both are integral and both are diffeomorphic to say
(t2, t2k+1,0), so byTheorem 1.2we see they are contactomorphic.

8. A remark on contact simple curves

An integral curvef : (C,0) → (C3,0) is calledcontact simple among integral curves
if only a finitely many contactomorphism classes appear in any integral deformationF :
(C × Ck,0) → (C3,0) of f . Note that the above notion of simplicity is slightly different
from the contact simplicity discussed in[1,23]. Compare also with the ordinary notion of
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simplicity [10]. Also note that the contact simple germs in the ordinary sense is classified
already in[23].

We consider the projectionΠ : C3 → C2 defined by(x, p, y) → (x, p), regardingC3

as a part of the contactification of the symplectic planeC2. If a plane curveg : (C,0) →
(C2,0) is given, then we have an integral curveg̃ : (C,0) → (C3,0) by

g̃(t) = (x, p, y) =
(
g1, g2,

∫ t

0
g2(ζ)

dg1

dt
(ζ)dζ

)
.

Plane curve germsg, g′ : (C,0) → (C2,0) are calledsymplectically equivalentor sym-
plectomorphicif there exist a holomorphic diffeomorphismσ : (C,0) → (C,0) and a
symplectomorphismφ : (C2,0) → (C2,0) with respect to the complex symplectic (area)
formω := dp ∧ dx.

Lemma 8.1. If two plane curvesg, g′ : (C,0) → (C2,0) are symplectomorphic, theng̃
and g̃′ are contactomorphic.

For the proof, see[1]. Then we have the following corollary.

Corollary 8.2. If g : (C,0) → (C2,0) is symplectically simple, theng̃ is contact simple.

In [14] Corollary 9.8, we have classified symplectically simple plane curves. By its
complex counterpart, which is proved in the same way, we have the following corollary.

Corollary 8.3.

A2@ : t �→ (t �→ (x, p, y)) =
(
t2, t2k+1,

2

2k + 3
t2k+3

)
,

E6 : t �→ (t �→ (x, p, y)) = (t3, t4, 3
7t

7),

and

E8 : t �→ (t �→ (x, p, y)) = (t3, t5, 3
8t

8)

are contact simple.

Remark 8.4. Consider the family of plane curvesgλ(t) = (t3, t7 + λt8) of type E12
having the parameterλ as the symplectic moduli. The integral liftings̃gλ(t) = (t3, t7 +
λt8, (3/10)t10+ (3/11)λt11) are, however, contactomorphic to each other, providedλ �= 0.
For also the family of plane curvesgλ(t) = (t4, t5+λt7) of typeW12 having the parameterλ
as the symplectic moduli, the same phenomena occurs. The list of contactomorphic classes
from g̃λ consists of(t4, t5 + t7, (4/9)t9 + (4/11)t11) and(t4, t5, (4/9)t9).
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